

Hobbes

Hobbes is a domain-targeting programming language and execution environment built and maintained at Morgan Stanley.

By design, it fulfills three major goals:

	Dynamic, in-process rewriting of processing rules for domain objects (trades, orders, executions)

	Persistence and out-of-band processing of structured logs for order managers and surrounding processes

	Rock solid, ultra-low latency execution

Hobbes was developed to manage the runtime of low-latency processes such as equities trading engines, which generally cannot be restarted during the working day.

The target user base is the development and production management teams responsible for building and maintaining these processes in production. As such, Hobbes is obsessively pragmatic: the vast majority of design choices are aimed at fulfilling these needs.

Perhaps most surprisingly, Hobbes is a variant of the pure-functional programming language Haskell. The following is an example of some Hobbes code from a production system at Morgan Stanley:

nil :: () -> (^x.(()+(a*x)))
nil _ = roll(|0=()|)

cons :: (a, ^x.(()+(a*x))) -> (^x.(()+(a*x)))
cons x xs = roll(|1=(x,xs)|)

Read on to discover more about the Hobbes language - its design and purpose, and how you can use it in your systems!

Note

Hobbes Usage

Hobbes is built for high performance integration with C/C++ applications. While Hobbes is a strongly typed language that offers compile-time checks, it doesn’t have a sandboxed runtime environment or runtime safety features. By design, Hobbes gives direct access to memory and does not have array bounds checks. Additionally, Hobbes supports compilation and execution of native code remotely over a network (RPC). This feature is meant for use within your trusted internal network only. If you choose to utilize such functionality, you need to be aware of these design choices and understand the security implications.

 Components

Components

Hobbes is comprised of two main components:

A programming language

Hobbes is a haskell-like programming language with a rich type system. Hobbes code can be embedded in a C++ program and data marshalled between the two. This means you can write C++ code which binds against a Hobbes environment and calls into Hobbes functions to execute functionality.

Over the day and as business requirements change, you can update the bound Hobbes code to give it different behaviour. The new code is compiled to highly efficient x86 instructions for later execution.

Similarly, you can make C++ functions available to the embedded Hobbes code. Ultimately, this gives you the power to choose the most efficient and effective format for different parts of your codebase: Highly structured and well-defined parts of your application can be built using C++, whilst the dynamic business logic can be written in Hobbes.

For more details about hosting Hobbes in a C++ application, see Embedding Hobbes.

A persistence format

Secondly, Hobbes comes with a typesafe, space-efficient persistence format for realtime storage and retrieval of application data.

This can be used for inter-process communication over TCP, quering and filtering of daily application logs, or fast post-hoc analysis of application behaviour based on Hobbes’ internal decision tree structure.

For more details about Hobbes’ persistence format, see Structured logging in Hobbes.

Rationale

Why create a custom programming language and persistence format? For a deeper look into the minds of its developers, you’ll want to read Digging into the domain

 Digging into the domain

Digging into the domain

Taking a deeper look into our domain might help clear things up.

Hobbes has been designed from the ground up, specifically to help devops staff manage the in-process configuration of extremely low latency Order Managers. An Order Manager (sometimes just called the “OM”) is a key component in a trading system - it’s responsible for maintaining the state of all the trade orders the organisation has received and is processing.

The OM takes instructions in the form “Buy 100 stocks of Example co. if the price is below 144.2 USD”. This is called a limit order, because the action is contingent on some property of the stock (in this case, its price).

The Order Manager will hold this order and watch the price at which Example co. is being sold at different exchanges, and once the price drops below 144.2 it’ll go ahead and issue an instruction to buy the stock. Some time later the exchange will respond with the result: either the purchase succeeded and the order filled, or else the details of the failure.

The alternative to a limit order is a market order, where the stock is bought regardless of the current price.

Complex Business

There’s some added complexity, though. One issue is that trades are visible to other players in the market, and if we execute a large order all at once, we’ll affect the price of the stock to our detriment. A number of trading strategies exist to constrain the effects of an order on the market - this is the basis of algo trading.

Further, a client may make further conditions on the execution of an order: they may want to split the order across a number of trading venues (half to NYSE, half to LSE). Depending on the client, you may wish to offer them credit. There may be long-standing master agreements between parties that form the basis of a clients trading decisions, that the OM must take into account when deciding when, where, and how to place orders.

This complexity mounts very quickly, and must be managed dynamically – in both senses: quickly and at runtime!

However, the go-to tools which developers use to manage complex decision trees full of runtime information (type hierarchies with virtual function calls; long if-else chains or switches) are wildly inappropriate in the hot path of a low-latency OM.

Two things are important:

	The ability to construct and compile a decision tree for a given stock

	The ability to quickly change the behaviour when given new constraints

Both the dynamic portion (the operands to function calls and control flow statements; e.g. the stock’s price) and the static portion (the operations themselves) must be changeable.

In particular: in-process, compiled logic allows the processor to maximise efficiency by filling an instruction and data pipeline, thus enjoying the benefits of mechanical sympathy. The output of the Hobbes compiler lives in a critical trading path where it sees a very large proportion of daily US equities trades.

Note

Why a custom language?

It’s a great question. The domain (dynamic, non-developer-driven changes to execution behaviour of processes which can’t be restarted, and which come with a tight latency budget) is specialised enough to quickly exhaust most existing solutions:

	Hosting a python environment would be user-friendly but not fast enough.

	Dynamically-compiled C++ would be fast but ugly, brittle, and complex.

	Marshalling runtime execution decisions to another process, perhaps one which enjoyed more natural dynamic mapping to natural language, would quickly blow latency away.

In addition, a custom type system allows for tight bindings with existing data in hosting applications, along with low-latency custom serialisation for binary logging.

 The Type System

The Type System

Like many functional-style programming languages, the power of Hobbes lies in its rich type system, so that’s where we’ll start. There are primitive types, arrays, record types, tuples, and variants.

Hint

hi, the Hobbes interpreter

You can execute most of the code examples we’ll show here in hi, the interpreter that comes packaged with Hobbes. For more information, take a look at the chapter hi, the Hobbes interpreter

 Control Flow

Control Flow

The Hobbes language itself is quite small. Function definitions, as well as types, type classes, and their instances, must be written in a Hobbes file in order to be defined. These examples are therefore shown without the hi prompt - for more examples, see hi can load files

The control flow rules for Hobbes are similar to Haskell:

Functions

Functions are first declared by their type, and then implemented for specific values.

addOne :: int -> int
addOne s = s + 1

If we didn’t first specify the type of the function, Hobbes would attempt to create a polymorphic function with parameter types restrcited simply by the way in which values of that type are used. For more about this behaviour, see polymorphism.

If/else

if a < 1 then 2 else 3

Note

Note that ‘if’ is an expression, meaning that it resolves to a value:

> b = if true then 12 else 13
> b
12

 Polymorphism

Polymorphism

Type Classes

The hobbes approach to polymorphism is delivered through Type Classes, a way of externally declaring a piece of behaviour that a type can support. Type classes are a rich and powerful way of adding bits of functionality to existing types.

For example, all the numeric types support addition, and so I can declare a function using Hobbes’s anonymous function syntax:

> add = (\u v x y z.u+v+x+y+z)

This can be read as “a function which takes arguments u, v, x, y, and z, and adds them all together”. The backslash starts the function (or “lambda”, because if you squint your eyes it looks a bit like the lowercase Greek letter “λ”), and the period separates the argument list from the function definition.

The types of the variables are left out, yet Hobbes will quite happily figure out types from the context in which they’re used. In this case, we can say that the type of those values is “something which supports addition”. Therefore, if we call ‘add’ with instances of numeric types, we’ll get the answer we’re looking for:

> add(0X01, 2, 3S, 4L, 5.0)
15

Note

Type inference in Hi

Hi has a number of advanced features, one of which is that it can show you the inferred type of an expression you’ve typed. We can use Hi to show us the inferred type of a smaller, simpler variant of our anonymous function:

:t (\y z.y+z)
Add a b c => (a * b) -> c

Hi has inferred the type for our three values (two parameters and one return value) to be the Type Class ‘Add’, and is showing the type of the function is one that takes a and b (“a * b”) and returns c.

There are two parts, separated by the =>. It’s easiest to take them backwards: The second part is the actual type of the value, which is (a * b) -> c. This can be read as “a function that takes an instance of a, and an instance of b, and returns an instance of c.

The first part is for type restrictions: things the compiler knows about a, b and c that limit what data instances of those types can represent. In this case, Hobbes is simply telling us that they must implement the Add type class (i.e. they overload the + operator).

Hobbes has simply inferred this about those types from the context in which they’re used. This is in stark contrast to languates where types are restricted on what interfaces they implement.

 The Embedded Compiler

The Embedded Compiler

Hobbes is a simple language with a rich type system, whose driving aim is to allow efficient reimplementation of functional logic at runtime.

As such, it comes packaged with a highly efficient compiler and type marshalling system.

Example: Hi, the Hobbes REPL

We’ve already seen one place where the Hobbes compiler is used. In its simplest form, the Hobbes REPL is a loop which takes Hobbes code, runs it line-by-line through the compiler, interprets the results and prints the output:

int main() {
 hobbes::cc c;

 while (std::cin) {
 std::cout << "> " << std::flush;
 std::string line;
 std::getline(std::cin, line);

 try {
 c.compileFn<void()>("print(" + line + ")")();
 } catch (std::exception& ex) {
 std::cout << "*** " << ex.what();
 }

 std::cout << std::endl;
 hobbes::resetMemoryPool();
 }
}

Binding Functions

The Hobbes compiler allows us to bind a C++ function; to make it available by name in the Hobbes environment:

int addTwo(int i){
 return 2 + i;
}

...
c.bind("addTwo", &addTwo);
...

Note

Function Pointers

A key aspect of functional programming is that functions are just special kinds of data, and that whilst there may be operations which can be performed on data, the application which can be performed on a function is that of parameter application. Once a function has had all its parameters applied the code is executed and the return value given back to the callsite.

This has a two major implications: we can assign functions to values (as we’ve already seen), and we can write higher-order functions: those which take another function as a parameter, or return a function. In C++, the type of a function is denoted entirely by its signature, the abstract format for which is the function pointer:

int sum(int a, int b){
 return a + b;
}

int (*twoIntOperation)(int, int) = sum;

We declare sum as the concrete example of a function which takes two ints and returns an int, and assign it to the variable twoIntOperation. The type of twoIntOperation is exactly that: a function which takes two ints and returns one.

The syntax is a little hairy. In Hobbes, the function type syntax is a lot clearer, as we’ll see very soon.

 HLOG: The Logger

HLOG: The Logger

As well as a programming language, Hobbes also comes packaged with a whole array of functionality to allow highly efficient structured logging from within C++ applications.

Structured logging from within C++

Hobbes persistence is backed by a shared memory region which is initialised when the logging application starts up. In order to define some of the parameters for writing to this region, we’ll use the DEFINE_STORAGE_GROUP macro.

DEFINE_STORAGE_GROUP

DEFINE_STORAGE_GROUP(
 MyGroupName,
 3000,
 hobbes::storage::Unreliable,
 hobbes::storage::AutoCommit
);

LogGroup correlation

Correlation of log messages is via the first parameter to the DEFINE_STORAGE_GROUP macro. The name must be unique - i.e. an application can’t define two storage groups of the same name.

At the same time, we specify the number of shared memory pages to allocate for the storage group in the second macro parameter. This should reflect the maximum expected throughput for our log messages, because we need to take special action if we exceed the limit)

Reliability and drop-or-block

The third parameter to DEFINE_STORAGE_GROUP is the behaviour to exhibit if we reach the capacity of the ringbuffer storage backed by our group’s shared memory region. hobbes::storage::Unreliable means that any attempts to write to a full buffer (as we’ll see with HSTORE and HLOG below) will fail, while hobbes::storage::Reliable means that such writes will block until the buffer is serviced by a consumer.

Manual vs Automatic commit

The final parameter to DEFINE_STORAGE_GROUP allows us to specify the commit behaviour. hobbes::storage::ManualCommit means that all log statements up to the commit call will be grouped together in a transaction, which we can inspect later.

Alternatively, specifying hobbes::storage::AutoCommit gives us uncorrelated log messages on the consumer side, but we don’t need to call commit ourselves.

Transactions which are manually committed will have a timestamp logged alongside them which can be used in out-of-band analysis and reporting, whereas autocommitted transactions have no timestamp. You can always call commit on an autocommit LogGroup, which will immediately persist the current transaction.

Finally, there’s one more difference in how persisted data is made available to us in code - which we’ll investigate in logs and transactions

Once the LogGroup has been set up, we can start to log data. For that, we’ll want to look at the HLOG and HSTORE macros.

HLOG and HSTORE

The HLOG macro logs a formatted message to a given LogGroup with an event name. It can be used for logging string output from applications.

HLOG(
 MyGroupName,
 EventName,
 "Format String with positional arguments $0, $1",
 12
 42.0
);

Using the HLOG macro provides compile-time safety for the format string, and gcc will throw an error if you refer to a positional parameter that doesn’t exist.

HSTORE allows for richer structured logging of data types that we declare. In the following example we’re simply logging an int, but Hobbes has support for all the Hobbes primitive types, as well as std::string, char *, and arrays, vectors and tuples of its supported types.

HSTORE(
 MyGroupName,
 EventName,
 12
);

Information about the types Hobbes is able to persist can be found in hobbes persistable types

Warning

File size

Practically speaking, what we’re discussing here is data persistence rather than logging. For that reason there’s no model for output file rotation. That means that your persisted data files might grow very large in size, and you’ll need to find a way to externally manage that.

At Morgan Stanley, Hobbes persistence is used in production applications which might be bounced daily or even weekly, resulting in persisted files of many dozens of gigabytes.

 Data Types

Data Types

What types of data can be logged in Hobbes?

Primitive types

Essentially, whatever you’d expect. Because the persistence format is binary, it’s both space-efficient and type safe, meaning the datatype you persist is what you get out. As such, the following primitive types can be persisted:

bool
uint8_t
char
16, 32, and 64 bit signed and unsigned ints
single and double precision floats
std::string and const char*

Aggregate types

If a type T can be persisted, then its array type T[] and its vector std::vector<T> can be persisted.

If types T0, T1, ..., Tn can be persisted, then a tuple std::tuple<T0, T1, ..., Tn> can also be persisted.

Custom types

You can create a struct that Hobbes can log using the DEFINE_PACKED_HSTORE_STRUCT macro, as long as the member types are persistable:

DEFINE_PACKED_HSTORE_STRUCT(TemperatureAndPressure,
 (double, Temperature),
 (double, Pressure)
);

With a little work, you can even make a custom class loggable as a field by specialising the hobbes::storage::store<T> type and implementing the static functions found inside.

You’ll find store in include/Storage.h in the github repo.

 Consuming logs with hog

Consuming logs with hog

When our producer code runs and starts logging, it initialises a shared memory region of the appropriate size and with a name which is visible to Hobbes logging consumers.

Over time, as the application logs, the ringbuffer which backs onto the shared memory region will fill up, and depending on the reliability semantics specified in the DEFINE_STORAGE_GROUP invocation, further writes will either block or fail.

To prevent this from happening, a performant consumer must service the queue and provide further processing for log messages. One such consumer which is pre-written with some solid default behaviour is hog.

hog

$ hog
hog : record structured data locally or to a remote process

 usage: hog [-d <dir>] [-g group+] [-p t s host:port+] [-s port] [-c] [-m <dir>]
where
 -d <dir> : decides where structured data (or temporary data) is stored
 -g group+ : decides which data to record from memory on this machine
 -p t s host:port+ : decides to send data to remote process(es) every t time units or every s uncompressed bytes written
 -s port : decides to receive data on the given port
 -c : decides to store equally-typed data across processes in a single file
 -m <dir> : decides where to place the domain socket for producer registration

Hog is reponsible for consuming messages from a particular LogGroup and coordinating their onward flow. Options are:

	Write messages to local disk. The default logfile directory is ./$groupname, and this can be overridden with -d.

	Write messages to a remote hog process, running on a server described with -p

Conversely, Hog is also able to receive log messages from a remote process with -s.

Logging to disk with hog

If we take our log message driver application from the previous section, start a Hog listener on the same LogGroup and then start the driver, we’ll see something like the following:

$ hog -g SimpleLogger
[2018-01-01T09:00:00.867323]: hog running in mode : |local={ dir="./$GROUP/$DATE/data", serverDir="/var/tmp" groups={"SimpleLogger"} }|
[2018-01-01T09:00:00.867536]: install a monitor for the SimpleLogger group
[2018-01-01T09:00:01.637614]: new connection for 'SimpleLogger'
[2018-01-01T09:00:01.733374]: queue registered for group 'SimpleLogger' from 3817:3817, cmd 0
[2018-01-01T09:00:01.912325]: ==> FirstEvent :: () (#0)
[2018-01-01T09:00:01.969274]: ==> SecondEvent :: [:char|10L:] (#1)
[2018-01-01T09:00:02.009241]: ==> log :: <any of the above>
[2018-01-01T09:00:02.129401]: finished preparing statements, writing data to './SimpleLogger/2018.01.01/data.log'

This output tells us a couple of things:

	Firstly, Hog is running in local mode, meaning that it’s going to consume messages from the Hobbes ringbuffer in memory and write them out to disk;

	When the driver application starts we get some state information about the LogGroup, and the message types;

	Hog has been able to determine the message names and, crucially, their types.

Reading logs from remote processes with hog

You can use two instances of hog to send Hobbes log messages from one host to another. The setup is simple:

On the logging host

On the host where the application is logging, invoke hog with the -p parameter as follows:

$ hog -g SimpleLogger -p $t $s $h:$p

Where:

	$t is the time in seconds between sent messages

	$s is the buffer size in uncompressed bytes before which a message is sent

	$h:$p is the host and port on which the receiving instance of hog is running.

Note

Messages are sent to the receiving host at least as often as $t. If $s bytes are ready to be sent, this will happen regardless of the time since the last message.

 Processing logs with hi

Processing logs with hi

We’ve already seen how to write C++ processes which log with the Hobbes logging API, and how we can use hog to pick up those log messages from shared memory and either store them locally or forward them on to another hog process running on a remote host.

In this chapter, we’ll look at how we can read those persisted logs and process them in the Hobbes environment.

You can read a logfile as it’s being written to, or one that’s been written to in the past. The name of the logfile is mentioned in the first few lines of the output from Hog. You’ll see something like

finished preparing statements, writing data to './SimpleLogger/2018.09.26.data-0.log'

For simplicity, we’ll use hi, the Hobbes REPL.

Reading the file

$ hi
> messages = inputFile :: (LoadFile "./SimpleLogger/2018.09.26/data-0.log" w) => w

That’s how we open the file in hi. It looks a bit cryptic, so let’s try to unpack it a little bit.

Firstly, this is simply an assignment of something called inputFile to the name messages. The interesting bit is in the type annotation, which you might remember from this previous section. This one is a little more long-winded than what we’ve seen before - but that’s essentially what it is: a tighter specification for the type of what messages is.

And that’s interesting, because it’s a gentle hint at the fact that messages is a type-safe collection of all the structured data inside the file we’ve specified there, data.log!

We’ll come back to how that works a little further down, but right now we need to introduce the Hobbes logfile format.

Logfile format

Hobbes stores its persisted data in a binary format, which means the files it outputs aren’t human readable. This makes them very space-efficient and means it’s very quick for Hobbes to do file I/O, it just means you have to use tooling to read the files.

In practice, that’s not so much of a problem because you either write the tools in advance, or else read a logfile in hi and use the appropriate queries to find the data you’re looking for. For example, at Morgan Stanley there’s a rich library of Hobbes tools which are used to hunt through logfiles to answer common queries.

The logfiles themselves have a header/body format, with a header describing the names and types (and by inference, the sizes) of each column. Immediately following the header is the body, which contains the actual persisted data. Therefore, performing an equality search on a member n of a struct of size m is trivial: you simply loop through every m bytes and compare the search value against the value at an offset of n.

The LoadFile unqualifier

This brings us back to LoadFile, and the type annotation in the code above. By now, you might have figured out what’s actually happening. The syntax is inherited from Haskell, but what LoadFile is doing is this:

	Loading the file listed as its argument

	Reading the header and extracting the type information for each column

	Externalising the type information into the annotation

Therefore the annotation becomes, at compile time, a type-safe indication of the type of data contained in the file. In a sense, LoadFile is a hook into the Hobbes compiler, allowing the hi process to create a type at compile time, based on the type information available in the file header.

Note

ORM: an analogy

If all this is a bit too hairy - don’t worry! You can always just type the code and it’ll work. Simply replace the name of the file with that of your persistence file and you’re good to go.

If you’d like a gentle push, you can think of LoadFile as a kind of backwards ORM. An Object-Relational Mapping tool can create a database schema for you based on a set of classes defined in code. You write your code and construct objects, and based on the ORM rules, these objects can be trivially persisted in a database table according to the schema.

Well, what if that worked backwards? A reverse ORM tool could look at a database table and read the schema, and construct classes that you can code against. That’s exactly what LoadFile is doing - except it all happens automatically, as part of the compilation process.

Incidentally, the same process is happening when we use hog to send structured data over the network for persistence: the header is sent when the target hog process starts up, and the type information contained into the header is passed through to the persisted file before data starts to stream.

 Networking with hi

Networking with hi

Hobbes supports native, typesafe client-server network programming in a very similar manner to its support for structured logfiles. Connection information alongside the types of data involved are exposed through an unqualifier much like LoadFile, in a manner mostly invisible to the user.

You can use Hobbes networking to perform actions on another host, such as gathering usage statistics, or performing administrative actions such as changing the log level.

Setting up the receiver

hi can be set to receive messages over the network. If we invoke hi with the -p flag we can specify the port to listen on:

$ hi -p 8080
[...]
running a repl server at myhost:8080
>

We’ll call this the server, and next we’ll connect to it over the network.

Opening a connection

From another instance of hi, create a connection to the server using the Connect unqualifier:

$ hi -s
> c = connection :: (Connect "myhost:8080" p) => p

Note

Unqualifiers

For more information about how this works, have a look at the LoadFile unqualifier, which we use to load data using the Hobbes persistence API.

 Data Types

Data Types

The rules for which built-in types can be used in Hobbes networking are the same as for Logging datatypes.

For custom datatypes, you should specialize hobbes::net::io<T>, or refer to hobbes/net.h in the GitHub repo.

 C++ Bindings

C++ Bindings

In addition to the native support Hobbes has for networking, there’s a useful C++ API that you can use to send messages to Hobbes processes.

DEFINE_NET_CLIENT

#include <iostream>
#include <hobbes/net.H>

DEFINE_NET_CLIENT(
 Connection, // Profile name, which we'll use later
 (mul, int(int,int), "\\x y.x*y") // Functionality to evaluate remotely
);

Similarly to the Logging code, we first define the Connection semantics that we want to use. This macro creates a connection class for us which has a constructor and a data member for the mul function, along with all the type negotiotiation and connectiona management logic.

Using the connection

int main(int, char**) {
 try {
 Connection c("localhost:8080");

 std::cout << "c.mul(1,2) = " << c.mul(1,2) << std::endl;

 } catch (std::exception& e) {
 std::cout << "*** " << e.what() << std::endl;
 }
 return 0;
}

Here we’re instantiating the synthesised Connection class, invoking its mul member (remotely!) and printing out the result.

Running the code

Again, spin up an instance of hi listening on port 8080. You won’t see any output from here.

$ hi -s -p 8080

Next, simply run your c++ driver program!

$./test
c.mul(1,2) = 2

 The Standard Library

The Standard Library

As well as the compiler infrastructure, Hobbes comes packed with a rich Standard Library of functions and types that make it easy to get started.

They’re all available in the default namespace, and we’ve used quite a few of them already throughout the documentation.

In this section, we’ll draw your attention to some of the most common and useful elements of the Hobbes Standard Library.

All the members here are written in plain, vanilla Hobbes - so digging into the source on GitHub is a great way to learn the language!

Simple Arithmetic

These Type Classes, and their instances (what we’d call a ‘realisation’ of the type class for a concrete type) allow Hobbes to handle arithmetic in a polymorphic manner:

class Add a b c | a b -> c where
 (+) :: (a,b) -> c

instance Add int int int where
 (+) = iadd

instance Add long long long where
 (+) = ladd

...

Because the Add Type Class (and the rest of the family: Subtract, Multiply, and Divide) is available in the global namespace, I can use its instances implicitly - i.e., the + operator is defined for all the basic types:

> 1 + 2
3

Note

built in?

It’s important to note that the + operator isn’t “built in” to Hobbes as operators might be in other programming languages. The resolution of + works because the compiler has recognised that there is a typeclass Add which provides an operator called + that can act on two ints.

 hi, the Hobbes interpreter

hi, the Hobbes interpreter

In the bin directory of your Hobbes build, you’ll find the Hobbes interactive interpreter, “hi”. You can use it to execute much of the code you see on these pages by just typing the line and hitting ‘enter’. It’s an example of a REPL, or “Read, Eval, Print Loop” - because those are the key steps that allow it to execute the code you enter.

When used interactively, Hi will show you the results of the execution of a line immediately:

hobbes/bin $ hi

hi : an interactive shell for hobbes